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Abstract
Many real-world settings call for multiple autonomous agents to
coordinate and work as a collective. In such settings, cooperative
coevolution—which trains a policy for each agent in parallel—has
emerged as a popular choice. However, providing these coevolving
agents only with feedback that evaluates the whole system of agents
is often suboptimal, as learning is each individual agent’s individual
responsibility. This necessitates deriving agent-specific feedback
from the system feedback, termed the “multiagent credit assignment
problem”. Oftentimes, however, such isolation of agent-specific
feedback may be computationally expensive, and may not yield
commensurate improvements in learning efficiency. In this paper,
we present Dflex, an extension of Difference Evaluation that offers
tuneable specificity in the feedback computed for each agent. This
tuneability—achieved by allowing a subset of coevolving agents to
‘share’ feedback—allows practitioners to trade between feedback
specificity and its compute expense. Our initial results in the multi-
agent rover exploration problem not only empirically indicate the
presence of the feedback specificity vs. compute cost trade-off, but
also show Dflex’s ability to provide control over it.

CCS Concepts
• Computing methodologies → Cooperation and coordina-
tion; Multi-agent systems; Intelligent agents.
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1 Introduction
Many real-world settings are best modelled as a multiagent sys-
tem, where multiple agents simultaneously learn to coordinate and
perform complex tasks. Cooperative coevolution, wherein a policy
for each agent in the system is learnt in parallel, has emerged as a
popular learning paradigm in such settings. Oftentimes, however,
the only available feedback to these coevolving agents evaluates
the performance of the whole system, and not each agent indi-
vidually. For agents to learn efficiently, it is necessary to provide
feedback that evaluates each agent individually. Without this agent-
specific feedback, agents may receive feedback for contributions
that are not theirs—making this feedback noisy and evolving using
it, inefficient.
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Deriving agent-specific feedback from a collective evaluation of
the whole system poses the well-known multiagent credit assign-
ment problem, which calls for accurately attributing performance
outcomes to individual agents. Difference Evaluation (D) [1] is a
prominent method that addresses this by estimating an agent’s
contribution by removing it from the system and re-evaluating the
system’s performance.

While the fine-grained and isolated feedback computed with D is
beneficial in large systems performing complex tasks, D’s reliance
on re-evaluations of system performance may introduce too much
of a computational overhead for small systems performing simple
tasks. If the multiagent coordination task is simple and involves few
agents, the general system feedback is often informative enough. It
is when we consider systems and tasks of an in-between nature of
size and complexity, that it becomes unclear whether fully isolating
feedback with D is better, or simply learning from the general
system feedback. We thus investigate the following question:
"How should a single agent’s feedback be isolated from the system

feedback to best suit the complexity of a problem?"
To this end, we generalise D so that an agent is also credited

for the contributions of select other agents. Varying the number
of agents whose contributions are included in an agent’s feedback
alters feedback specificity1. If a subset of the agents in the system
all receive credit for each other’s contributions, then this feedback
need only be computed once for the subset—saving compute steps.
We call this flexible extension Dflex, and it lets practitioners trade
between feedback specificity and computational cost.

Our contribution in this paper is a preliminary presentation
of the Dflex operator, and an implementation in a coevolutionary
framework that learns a policy for each agent in parallel. We use
the credit computed using Dflex as a local fitness for each agent
to use in evolution. We also compare Dflex with D and learning
from just the system feedback. Initial experiments in the multiagent
rover exploration problem show that Dflex provides useful control
over the feedback specificity vs. computational expense trade-off.
Through Dflex, our goal is to articulate this trade-off clearly, and en-
courage the research community to consider it at time of developing
multiagent learning algorithms.

2 Background
2.1 Multiagent Systems and the Credit

Assignment Problem
The multiagent credit assignment problem is central in multiagent
systems. It involves quantifying each agent’s contribution towards
system performance, and providing this measure as feedback for

1Including more agents reduces specificity, whereas including fewer increases it.
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the agent to learn from. Such agent-specific feedback promotes
learning efficiency, as it filters out the effects of other agents. In re-
inforcement learning, the credit for each agent’s contribution to the
system performance is provided as a reward [9, 11]. In evolutionary
algorithms, credit is provided as a fitness value that evaluates an
agent’s policy [4, 5].

2.2 Related Work
Difference Evaluation. The Difference Evaluation operator (D) is a
prominent approach for tackling the multiagent credit assignment
problem [4, 8]. For an agent 𝑖 , 𝐷𝑖 is given by:

𝐷𝑖 = 𝐺 (z) − 𝐺
(
z−i ∪ ci

)
[12], (1)

where z represents the system’s joint action (combined action of all
agents), 𝐺 (z) denotes the global performance measure, z−i is the
joint action excluding agent 𝑖’s input, and ci is a counterfactual (or
default) action that substitutes agent 𝑖’s original action. The term
𝐺
(
z−i ∪ ci

)
estimates how the system would perform without agent

𝑖’s contribution. Thus, 𝐷𝑖 isolates the contribution of agent 𝑖 to the
performance of the whole system.

Difference Evaluation has demonstrated effectiveness inmethods
that employ Cooperative Coevolutionary Algorithms (CCEAs) to
evolve multiagent joint policies, where it delivers a local fitness
signal that quantifies each agent’s individual contribution to the
overall system performance [2, 4, 6].

3 Method: Dflex

We now describe how to compute credit using Dflex.

Preliminaries
• Let the multiagent team comprise 𝑘 distinct agents, and the

team policy𝜋 consist of𝑘 single-agent policies𝜋1, 𝜋2, . . . , 𝜋𝑘 .
• Let each agent 𝑖 ∈ {1, 2 . . . 𝑘} have a corresponding credit

set 𝑠 (𝑖) ⊆ {1, 2, . . . 𝑘} such that agent 𝑖 receives credit for
the contributions of each agent in 𝑠 .

Dflex Computation
We refer the reader to the original D equation (Equation 1). Now,
for an agent 𝑖 ∈ {1, 2 . . . 𝑘}, given a credit set 𝑠 (𝑖) ⊆ {1, 2, . . . 𝑘}, we
define Dflex as:

Dflex
𝑖 = 𝐺 (z) −𝐺 (z−s(i) ∪ cs(i) ) (2)

Here, we effectively take out the contribution of |𝑠 (𝑖) | agents
from the system, and assign the difference in team performance as
agent 𝑖’s credit. On one extreme, if 𝑠 (𝑖) = {𝑖}, this equation reduces
to the original D equation (Equation 1). On the other extreme,
if 𝑠 (𝑖) = {1, 2, . . . 𝑘}, the second term in Equation 2 essentially
becomes zero, meaning that the agent simply receives the whole
team’s performance, 𝐺 (z), as credit.

If, for an agent 𝑖 , 𝑠 (𝑖) = 𝑠 ( 𝑗)∀𝑗 ∈ 𝑠 (𝑖), then each agent in the
credit set 𝑠 (𝑖) shares the same feedback, which means that the Dflex

value (Equation 2) need only be computed once for the entire set.
This saves |𝑠 (𝑖) − 1| re-evaluations.

The Cost of Evaluating System Performance
While Dflex requires the multiagent system to be evaluated both
with the set of original constituent policies and counterfactual re-
placements, each such evaluation does not necessarily require a
full episode-wide interaction with the environment. In many do-
mains, agents may have access to a function that directly evaluates
trajectories (state-action pairs of each agent), or predicts their per-
formance [13]. Thus, instead of re-simulating or rolling out the
policy in the environment, we may simply be able to construct
counterfactual trajectories directly, and evaluate them. Such eval-
uations, although not fully reflecting of the decision-making that
a policy would demonstrate in an actual rollout, are significantly
cheaper, and dominated by actual policy rollouts in computational
cost.

CCEA Implementation
We now set up a CCEA to evolve a parametrised multiagent control
policy. Each subpopulation in the CCEA is tasked with evolving
a single agent’s parametrised policy. In each generation, a policy
for each agent is randomly sampled from the respective subpopu-
lation and arranged to form a multiagent team policy. This team
policy then interacts with the environment and collects rewards
for one complete episode. The cumulative reward from an episode
is assigned as the team’s evaluation. From the team evaluation, we
then compute the credit for each agent using Dflex, as described in
Equation 2, and assign it as its policy’s local fitness. We return each
policy to its respective subpopulation, and sample a new policy
from each subpopulation. We repeat this until each policy from
each subpopulation has been evaluated and received a local fit-
ness value. Each subpopulation is then evolved for one generation
using selection (via binary tournament), crossover (via simulated bi-
nary crossover [7]), and mutation (Gaussian perturbation). We then
repeat this procedure for several generations until convergence.

4 Experiment
The problem at large is that of multiple agents coordinating to
perform a complex task, when the only feedback available evaluates
the entire team and not individual agents. Within this context,
we seek to test two effects: that of an agent receiving credit for
actions of agents in addition to itself (“specificity effect”) and that
of the evaluations that are saved when multiple agents share credit
(“sharing effect”). To study the specificity effect, we must vary how
many agents’ contributions a single agent receives as credit. To
study the sharing effect, multiple agents should have identical credit
sets, so that credit for these agents is also identical and thus need
only be computed once.

4.1 Testing Domain
We use an instance of the Multiagent Rover Exploration (Rover)
Domain, a classic multiagent coordination domain that has been
in several previous works [1, 3]. In this domain, multiple rovers
must coordinate and explore a 2-dimensional surface to capture
Points of Interest (POIs) spread across the environment. Rovers
receive a reward for each successful capture of a POI, but must
avoid congesting a single POI, as a POI may only be captured once.
Thus rovers must not only learn the navigational skills to approach
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POIs, but also coordinate with other rovers to ensure they capture
distinct POIs.

Each rover agent’s policy is a fully connected feed forward neural
network. Each agent’s state input comprises four sensors pointed
in the cardinal directions to sense POIs, and four sensors to sense
other agents. Each sensor input is a sum of 𝑒−𝑑 values, where 𝑑 is
the distance to the feature being sensed. From these readings, the
agent must output 𝑑𝑥 , 𝑑𝑦 navigational actions.

We now define our instance of the Rover domain. It is of dimen-
sions 25×25 units with 80 POIs, and each POI may be captured from
a maximum of 0.5 units away. We arrange the POIs in an evenly
spaced grid, with the exact centre of the map left empty. We test 8
agents in this domain, with the agents starting from the centre of
the map.

4.2 Algorithms
We use Dflex to compute credit with two different specificities, and
two different levels of sharing. At the start of each run, each agent
is assigned a credit set, and the agent receives credit for the actions
of all the agents in the credit set. Each agent’s credit set stays fixed
for the entire training process.

To study the specificity effect, we propose 2Dflex and 4Dflex.
In 2Dflex, each agent receives credit for its own contribution, and
that of one other agent (more specific). In 4Dflex, each agent receives
credit for its own contribution, and that of three other agents (less
specific). The credit set is determined via random selection at the
start of each trial, and remains fixed throughout training We ensure
that the credit set is distinct for each agent.

To study the sharing effect, we propose 2Dflex
𝑠ℎ𝑎𝑟𝑒

and 4Dflex
𝑠ℎ𝑎𝑟𝑒

.
Instead of each agent having a distinct credit set, we partition the
system of agents into credit sets of two for 2Dflex

𝑠ℎ𝑎𝑟𝑒
, and of four for

4Dflex
𝑠ℎ𝑎𝑟𝑒

, respectively. Each agent in a particular credit set receives
credit for contributions of the whole set. Thus, within each credit
set, each agent shares credit, and this credit value need only be
computed once for the whole set—saving evaluation steps (Section
3).

Finally, for comparison, we also test 𝐷 , and training with just
the global team feedback with no credit assignment (G).

5 Results and Discussion
In each chart, we plot mean values with a solid line and marker,
with the lightly shaded region representing the standard error of
the mean across three statistical runs with seeds 2024, 2025, and
2026.

5.1 When Evaluations Are Cheap
When agents have access to a trajectory evaluation function, a
team policy need not be re-simulated to be re-evaluated. In such a
scenario, the evaluations themselves are not a significant compu-
tational bottleneck compared to the actual simulations of a team
policy. Therefore, in Figure 1 we compare the mean of the highest
fitness attained in each generation by each algorithm.

Observation: As expected, 𝐷 , with its highly specific credit value
promotes efficient learning among the agents, and is significantly
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Figure 1: Mean best fitnesses at each generation by each algo-
rithm. Dflex provides a gradation of performance according
to credit specificity.

better than learning with just the team feedback, G. What is inter-
esting, however, is how variants of Dflex provide a clean gradation
of performance between that of D and G. With each step increase
in specificity, we notice a small performance bump (2Dflex and
2Dflex

𝑠ℎ𝑎𝑟𝑒
are both better than 4Dflex and 4Dflex

𝑠ℎ𝑎𝑟𝑒
).

Explanation: Intuitively, this is the de-noising effect of increasing
the specificity of feedback. As we assume evaluations are cheap, the
credit sharing effect is absent, and the specificity effect is clearly
highlighted.

Takeaway: When evaluations are cheap, it may be unnecessary to
minimise them. Instead, leveraging these evaluations to the max-
imum possible extent—as done by D—is likely to yield the best
performance. The specificity effect dominates the sharing effect,
with more specific credit values being more desirable.

5.2 When Evaluations Are Expensive (i.e.
Equivalent To Simulations)

In cases where no direct trajectory-evaluator function exists, each
re-evaluation of a modified team policy requires a complete re-
simulation. Studying the specificity vs. computational expense
trade-off becomes crucial. In Figure 2, we compare the mean high-
est fitness attained in each evaluation by each algorithm.

Observation: G, requiring no extra re-simulations, significantly
outperforms other methods. An interesting observation is that
among methods that each compute a unique credit value for each
agent (2Dflex, 4Dflex, and D), the more specific the credit, the better
(D is the best among these, followed by 2Dflex, and then 4Dflex).
Another observation is that for the same specificity, credit sharing
offers significant performance boosts (2Dflex

𝑠ℎ𝑎𝑟𝑒
is better than 2Dflex,

and 4Dflex
𝑠ℎ𝑎𝑟𝑒

than 4Dflex).
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Figure 2: Mean best fitnesses at each evaluation by each algo-
rithm. When evaluations are expensive, methods that rely
less on them perform better. This is further highlighted by
Dflex variants that use various number of evaluations for the
same credit specificity.

Explanation: When re-evaluations are equally expensive as re-
simulations, decisively acting on each evaluation becomes critical.
Each algorithm performs selection, mutation, and crossover in each
generation. However, for instance, G performs these after signif-
icantly fewer evaluations than, say, D. Therefore, for the same
number of evaluations, more mutation steps, more selection steps,
and more crossover steps help G evolve a better array of policy sub-
populations than D. Similar logic applies when comparing variants
of Dflex.

Takeaway: When evaluations are expensive, the credit sharing
effect dominates the specificity effect. However, we are unable to
confidently assert that the trade-off between specificity and compu-
tational expense is linear, given the close performance of 4Dflex

𝑠ℎ𝑎𝑟𝑒
,

2Dflex
𝑠ℎ𝑎𝑟𝑒

, and D. If the trade-off was linear, we would have clearly
observed 4Dflex

𝑠ℎ𝑎𝑟𝑒
perform better than 2Dflex

𝑠ℎ𝑎𝑟𝑒
, then followed by D.

6 Conclusion and Future Work
In this work, we presented an initial concept for Dflex, which ex-
poses control over the specificity vs. computational expense trade-
off in multiagent credit assignment. Our experiment in the multi-
agent rover exploration domain further indicated the presence of
this trade-off, and demonstrated Dflex’s ability to control it.

Much work must still be done to concretely describe the nature
of this specificity vs. computational expense trade-off, however.
For this, we will rigorously test variants of Dflex across team sizes,
sizes of credit sets, degrees of reward sparsity, and under multi-
objective settings. Additionally, we did not investigate how Dflex

affects the evaluation of indirect contributions of agents, such as
influencing other agents to perform rewarding actions, or being
in their observations at crucial moments [10]. Therefore, would

also like to take the first steps towards crediting such indirect
contributions without explicit heuristics to measure them, by using
Dflex instead.
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